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Up to the present time, one of the main reasons for the mixing of the liquid core of a hardening melt has
been considered to be thermal gravitational convection. At the same time, it is to be expected that the con-

centrational inhomogeneity arising during the process of solidification, being nonidentical in its composition,
will algo have a considerable effect on the process of the mixing of the liquid core of a hardening melf,

For the construction of a mathematical model of concentration convection, a rectangular region with
transverse cross-sectional dimensions L; X Ly, semiinfinite along a horizontal coordinate and normal to the
plane of the cross section,was considered. Along the horizontal dimension Ly, the coordinate 7 4(¢,) is plotted
and along the vertical dimension L, the coordinate 7,(¢,).

The region is filled with a melt having an initial impurity content C,. The initial temperature of the melt
T, is essentially close to the crystallization temperature Te. The initial state is a state of rest, with a uniform
distribution of the impurity and the temperature over a cross section of the region.

As the boundary of the solidification we take a flat surface, directly separating the solid and liquid
phases. The law of the forward motion of the boundary of the phase transition is taken from the classical solu-
tion of the Stefan problem, in the form of the law of the "square root"

31=11—“VT’; 62=lz—a'\/F_m R1=Rz=aVF;,

where 1,=L,/x, is the relative width of the plane; 7,=L,/X, is the relative height of the cavity of the crystal-
lizer; x,is the characteristic dimension of the region; Fy=D7/x} is the dimensionless time; D is the diffusion
coefficient of the impurity in the liquid phase; « is the solidification coefficient.

Such an approach to the determination of the position with time of the boundaries of the phase transition
is justified. A conjugate solution [1], during the course of which the motion of the boundary of the phase tran-
sitionwas determined, showed that there is no substantial deviation from the law of the "square root"; the
solution of the problem itself and the program are complicated considerably and the calculating time increases.

At a moment of time differing from zero (t>0), the temperature of the region boundaries drops jumpwise
tothe crystallization temperature ofthe melt. The temperature inhomogeneity arising under these circumstances
as aresult of the closeness of Tyand T¢ is assumed to be insufficient for the origin and development of a thermal con~
vective motion inthe melt. This follows from an evaluation of the relative role of thermal and concentration convec-

‘tion: A comparison of the dimensionless Gr and Arynumbers show that, with small degrees of superheating,
Gr/Ar, ~ 1073 «1, where Gr=gB (T — To)x5 /v? is the Grashof number; Ary=ygCyx}/1? is the modified Archi-
medes number; v =1.27 1078 m?/sec is the coefficient of kinematic viscosity; 8 =0.17-10~° deg™!is the co-
efficient of volumetric expansion; g is the acceleration due to gravity; v is a coefficient characterizing the
relative change in the density as a function of the concentration,

= _;. 20 ~0.25, C,=0.03%.

The difference in the solubility of the impurity in the solid and liquid phases brings about three-dimen-
sional inhomogeneity of the concentration field. Under these conditions with determined concentration gradi-
ents in the liquid core existing in a gravitational field, a convective motion arises, whose direction is deter-
mined by the ratio of the density of the impurity and the density of the mother melt.

Determining the characteristic velocity and the characteristic pressure difference, respectively, by the
expressions Uy = v /Xy, Pmax — Pmin =Pol, Where pmax — Pmin is the characteristic pressure difference and
p o is the density of the melt, we write the equation of motion
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%—{-(VV) = — Vn+SmAV +1,Sm2Ar, 88, (1)
)

where 6 S=8; — S for every moment of time is defined as the difference between the concentrations at points
of the boundaries of the phase transition and points located at the corresponding lines of the grid, starting
from which the concentration gradient can be neglected (as such points there were taken points at which the
concentration is less than that at the preceding points by 0.01): 7 =p/(Pmax—Pmin) is the dimensionless
pressure; Sm=p/D is the Schmidt number; Igis aunit vector, coinciding with the direction of g.

The equation of diffusion
8810F, + (Vy)S = AS
(8=C/C, is the dimensionless concentration), the equation of continuity
vV =0,
The given system is completed by the following initial and boundary conditions:
Vip=0=0, Slr=0=0, Viln=e, = Viln-r, = Viln—e. =V} nymer, = 0,
Voln=e, =Valn=r, =V, In=e. =V Ine=r, = 0,

where Vy=u,/uy, V,=u,/u, are the dimensionless components of the velocity along the axes 1, and 7,, respec-
tively.

The boundary conditions for the concentration are written at each boundary of the region; here the
difference in the impurity solubility in the solid and liquid phases is taken into account by the equilibrium co-
efficient of the impurity redistribution k; the impurity diffusion in the solid phase is neglected in comparison
with the liquid phase:

2 . 4 :
— 0_51 \ &1 (1 — %) S |n=e, —5‘% rs Ri(4 — k) S|n,=r,»
1==€y 1==ddg
a8 R 98 ;
k _ e e = — o
BT]z N:=R: ! (i ) S IYIz—-Ru a’l’lg Ma==€z #2 (1 k) S l“’_a”

where ny=x{/uy, 1, =x%,/x,are dimensionless coordinates; R}, &}, R}, &), are the velocities of the motion of
the lateral, upper, and lower boundaries.

The problem was solved by the method of finite differences [2], using the integrointerpolational method
and the method of fractional spacings {3].

For the subsequent transformation the following were introduced: the stream function ¢; the curl of the
velocity ¢; and the new variables £, and £,, mapping a rectangular region with movable boundaries on the
region of a unit square, so that, during the time of the solidification process, 0=¢,=1, 0 ¢, =1, where

b= — Bile; — Ry)s &= (0, — R)/(ey — Ry
The uniform coordinate and time grids were chosen in the form
o, ={li=ih, Le=mh, h =] =1M=>0; i=0,1,2,...,1;
m=20,1,2, ..., M}
n
FOnZ{FO:ZOT‘\’, T‘V=A"n£'$ 0<A<1}'
—

The coordinate grid used in the calculation had a dimension wp =32% 32. The algorithm for calculation
of the system of the equations of motion and mass transfer corresponded to [{4]. The numerical solution of the
system was carried out on a Dnepr-21 digital computer.

The specific weight of the impurity was assumed to be greater than the specific weight of the mother
melt; therefore, the term Sm2Ar068 in Eq. (1) was taken as positive.

An investigation of concentrational gravitational convection was made for the Archimedes numbers Ar,=
0.2°10% (n=7, 8, 9). In view of the fact that the character of the convective motion is, in general, conserved
for all the above Archimedes numbers, a detailed analysis of convective motion was made for the number
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Ar,=0.2* 108, while, for the numbers Ary=0.2- 10" (n=17, 9), only a few singularities were investigated. The
problem was solved with the following parameters:

Z, = 600 mm, o, = 32X32, a = 10, k = 0.5.

The geometry for which the calculation was made was such that 3,/7;=3. The relative error of the calculation
was determined during the course of a numerical experiment and, for a coordinate grid with a dimension of
32x 32, did not exceed 5%.

An analysis of the results of the calculation shows that, at a moment of time differing from zero, the
excess impurity is displaced out of the solid phase to the phase interface. This brings about the development
of a certain concentration inhomogeneity at the boundary of the phase transition, characterized by a maximal
concentration gradient (Fig. 1a, b, F;=0.8" 1075, 0.54° 1073, respectively).

Thé melt along the boundary of the phase transition, enriched in the impurity, sinks down to the bottom
part of the liquid core, by the same token setting into motion, toward the upper boundary of the cavity of the
crystallizer, the melt which is enriched in the impurity to a lesser degree, due to its greater distance from
the boundary of the phase transition. As a result of this, in the liquid core of the solidifying melt, as in the
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case of thermal gravitational convection [5], there arise two vortices of the velocity, symmetrical with
respect to the vertical axis of symmetry of the crystallizer cavity and asymmetrical with respect to the
horizontal plane passing through the middle of the axis Of, (Fig. lc, d, ¥;=0.8" 107, 0.54° 1073, respectively).
The results of the calculation show that, in the initial period, the zone of "descending® flows is narrower

than the zone of "ascending" flows. With development of the motion, the zone of "descending® flows expands .
and the zone of "ascending® flows contracts. Under these circumstances, near the limit of the phase transi-
tion, the component of the velocity V, attains a maximal value.

The character of the time distribution of the maximal value of the component of the velocity of the con-
vective motion V; makes it possible to divide the whole process of convective motion into two periods; a
period of the acceleration of the liquid core of the hardening melt to a maximal value of the velocity - and a
period of slow decrease in the velocity; the first period is considerably shorter than the second (Fig. 2, curve
2, Arg=0.2" 10%). Such a distribution of the velocity is obviously a consequence of the fact that, in an interval
of time corresponding to the first period, there is a restructuring of the concentration field, as a resilt of
which in the liquid core of the hardening melt greater concentratwn gradients arise, bringing about a rise
in the rate of increase of the convective motion.

The process of a slow decrease in the velocity of the convective motion against the background of an
overall increase in the concentration of the impurity in the liquid core of the hardening melt is obviously
explained by the fact that, with a comparatively slow increase in the level of the impurity in the liquid core,
the level of its concentration inhomogeneity decreases at approximately the same rate.

The total duration of the convective motion is due to the presence of concentration inhomogeneity, which
exists up to the end of the hardening process. This explains the rather high rate of convective motion practi-
cally up to complete solidification of the ingot; here the difference between the maximal and minimal values
of the velocity is approximately 10%. An increase in the Ar, number has a considerable effect on increasing
the level of the rate of development of convective motion. Thus, even with a value of the Archimedes number
Ary=0.2" 10° (see Fig. 2, curve 3), a concentration gradient arises in the melt, sufficient in value to bring the
whole mass of the liquid core of the hardening melt into motion at a moment of time (¥,=0.81- 107%) practically
coinciding with the start of the process. With an increase in the Ary number, there is a rise in the value of
the term of the equation of convective motion (1) Sm?Ars S, an increase in which, even at the start of the
development of the process, determines a level of thie concentration inhomogeneity sufficient to bring the
whole mass of the melt into motion. This also promotes a higher rate of development of the process of con-
vective motion as a whole. :

The shortening of the period of acceleration of the melt to a maximal value, noted in Fig. 2 (curve 3), is
obviously explained by the above reason.

With a decrease in the Ar, number (Ary=0.2°107), the maximal value of the rate of motion of concentra-
tional convection decreases appreciably (see Fig. 2, curve 1). Under these circumstances, the period of
acceleration of the melt to a maximal value of the velocity increases.

This is explained by the fact that, with a decrease in the Ar; number, there is a decrease in the value
of the term SmQaroés of Eq. (1). This leads to a considerable lowering of the level of the concentration in-
homogeneity, which is the reason for the slower development of all the above-described processes.
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